a、金属、玻璃、陶瓷等的粘接
金属、玻璃等物质表面张力很高,属于高能表面,在pu胶粘剂固化物中含有内聚能较高的氨酯键和脲键,在一定条件下能在粘接面上聚集,形成高表面张力胶粘层。一般来说,胶粘剂中异氰酸酯或其衍生物百分含量越高,胶粘层的表面张力越大,胶越坚韧,能与金属等基材很好地匹配,粘接强度一般较高。
含一nco基团的胶粘剂对金属的粘接机理如下:
金属表面一般存在着吸附水(即使经过打磨处理的金属表面也存在微量的吸附水或金属氧化物水合物),一nco与水反应生成的脲键与金属氧化物之间由于氢键而螯合形成酰脲—金属氧化物络合物,一nco基团还能与金属水合物形成共价键等。
在无一nco场合,金属表面水合物及金属原子与氨酯键及脲键之间产生范德华力和氢键,并且以tdi、mdi为基础的聚氨酯胶粘剂含苯环,具有冗电子体系,能与金属形成配价键。金属表面成分较为复杂,与pu胶之间形成的各种化学键或次价键(如氢键)的类型也很复杂。
玻璃、石板、陶瓷等无机材料一般由ah09、s02、cao和na20 等成分构成,表面也含吸附水、羟基,粘接机理大致与金属相同o
b、塑料、橡胶的粘接
橡胶的粘接一般选用多异氰酸酯胶粘剂或橡胶类胶粘剂改性的多异氰酸酯胶粘剂,胶粘剂中所含的有机溶剂能使橡胶表面溶胀,多异氰酸酯胶粘剂分子量较小,可渗入橡胶表层内部,与橡胶中存在的活性氢反应,形成共价键。多异氰酸酯还会与潮气反应生成脲基或缩二脲,并且在加热固化时异氰酸酯会发生自聚,形成交联结构,与橡胶分子交联网络形成聚合物交联互穿网络(ipi),因而胶粘层具有良好的物理性能。用普通的聚氨酯胶粘剂粘接橡胶时,由于各材料基团之间的化学及物理作用,也能产生良好的粘接。
pvc、pet、frp等塑料表面的极性基团能与胶粘剂中的氨酯键、酯键、醚键等基团形成氢键,形成有一定粘接强度的接头。有人认为玻纤增强塑料(frp)中含一oh基团,其中表面的一oh与pu胶粘剂中的一nco反应形成化学粘接力。
非极性塑料如pe、pp,其表面很低,用极性的聚氨酯胶粘剂粘接时可能遇到困难,这可用多种方法对聚烯烃塑料进行表面处理加以解决。一种办法是用电晕处理,使其表面氧化,增加极性:另一种办法是在被粘的塑料表面上采用多异氰酸酯胶粘剂等作增粘涂层剂(底涂剂、底胶)。如熔融凹挤出薄膜在pet等塑料薄膜上进行挤出复合时,由于邢表面存在低聚合度的弱界面层,粘接强度不理想,使用底胶时,多异氰酸酯在热的聚乙烯表面上扩散,使弱界面层强化,复合薄膜则具有非常好的剥离强度。
c、织物、木材等的粘接
织物、木材等基材由纤维组成,而纤维具有一定的吸湿率,并且常含有醚键、酯键、酰胺键等极性键,以及羧基、羟基等。水和羟基容易与pu胶粘剂中一nco基团反应,形成牢固的氨酯键和脲键等化学键,而纤维中的极性基团与胶中的极性基团之间形成氢键,并且胶粘剂分子还容易渗入纤维之间。pu对于这类材料一般能形成 牢固的粘接。